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Abstract

We describe an algorithm for making inferences in a hierarchical lin-
ear model. The model allows different slopes and intercepts for differ-
ent groups, and ties together the different slopes by representing them
as samples from a higher level distribution. (The intercepts are treated
as statistically independent.) Our model and code permit many options
for the variance of this hierarchical distribution for the slopes, includ-
ing gamma distributions on the precision, t-distributions on the standard
error, pooled slopes (all equal), and independent slopes. The algorithm
is described in the paper; an implementation of the algorithm in R is
available on request.
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1 Introduction

We consider inference in a two-level linear regression model, in which the slopes
are drawn from a normal hyperprior:

yij ∼ N(αi + βi · tij , σ2) (i = 1, . . . , g, j = 1, . . . , ni). (1)

βi ∼ N(β0, σ
2
β). (2)

Here, αi and βi are the intercept and slope for the ith group, yij is the jth
measurement in group i, taken at time tij , and σ2 is the variance of the mea-
surements. We assume g groups, with ni measurements in group i. In the
hierarchical model, the parameters β0 and σβ are assigned prior probability dis-
tributions, and the posterior of all the parameters is inferred through Bayesian
inference.

The model is useful when the distribution of slopes is expected to be ex-
changeable though not necessarily independent [3]. The degree of similarity
between the slopes is determined by the distribution of σβ . If the prior forces
σβ to be zero, then the slopes are the same in all groups, and the model is some-
times called the “pooled model.” If the prior forces σβ to be very large, then
the slopes are statistically independent. Either of these cases can, of course, be
implemented directly in simpler non-hierarchical models.

Unless there is a great deal of data, the inferences will be quite sensitive
to the choice of prior on σβ . There is generally little prior information about
σβ so we often want to use a noninformative prior. There are a number of
different proposals for noninformative priors; see [3, Sec. 5.7.3] for a discussion
and further references. Also, we may want to use informative priors sometimes.
It is often useful to test the sensitivity of one’s inferences the choice of prior, or
to parameters in the prior, and for this reason, it is useful to be able to easily
test a variety of different priors.

The purpose of this paper is to describe a hierarchical regression algorithm
that is capable of using a variety of different priors for σβ , including (i) the
root-inverse-gamma prior (corresponding to the gamma prior on the precision,
λβ ≡ 1/σ2

β); (ii) the “flat” prior, recommended as a noninformative prior in [1];
the limiting cases of a (iii) pooled model and an (iv) independent model; and
(v) the half-t priors, also recommended as noninformative choices in [1]. The
code is available on request.

2 Definition of priors

We give formulas for some recommended priors.

2.1 Root inverse gamma prior

The density of the root-inverse-gamma (RIG) prior [3, Sec. 2.6.6] is

pRIG(σ | a, b) =
2ba

Γ(a)
σ−2a−1e−b/σ

2

. (3)
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The root-inverse-gamma distribution on σ is equivalent to the gamma distribu-
tion on the precision, λ = 1/σ2, where

pGamma(λ | a, b) =
ba

Γ(a)
λa−1e−bλ.

a is called the shape parameter in both distributions. b is called the inverse
scale parameter in the gamma distribution. In the RIG distribution, σ scales
as
√
b.

2.2 The flat prior

The flat prior can be realized as an RIG(− 1
2 , 0) prior. The prior is improper,

but the likelihood is proper when there are at least three groups [1, p. 21].

2.3 Pooled and independent priors

When discussing limiting cases, it is somewhat easier to work in terms of the
precision λ than the standard deviation, because the mean and standard devi-
ation of the gamma distribution are available in closed form, as a/b and

√
a/b,

respectively. The pooled prior corresponds to the limit λ → ∞. It can be ap-
proximated by λβ ∼ Gamma(a, b) with a large and b = 1, say. The independent
prior corresponds to the limit λ→ 0. This prior can be implemented by taking
large b and a = 1, say.

2.4 Half-t prior

The density of the “half-t” distribution, |tν |, is

p|tν |(θ|s
2) =

2Γ( 1
2 (ν + 1))

Γ( 1
2ν)
√
νπs

(
1 +

1

ν

(
θ

s

)2
)− 1

2 (ν+1)

(θ > 0). (4)

We are particularly interested in the case ν = 1, the “half-Cauchy” distribution,
with density

pHC(θ|s2) =
2

π

s

s2 + θ2
(θ > 0). (5)

3 Model

In order to have a single code implementing all these priors, it is helpful to write
βi = β0 + δi, where δi = ξηi. The model is

yij ∼ N(αi + (β0 + ξηi) · tij , σ2) (i = 1, . . . , gj = 1, . . . , ni). (6)

ηi ∼ N(0, σ2
η). (7)

A graphical representation of the model is shown in Fig 3.
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Figure 1: Graphical representation of hierarchical linear model with parameter
expansion. Variables are identified with nodes. The distribution of a node is
conditional on the nodes pointing to it. Rectangles are “plates,” which are
duplicated the number of times indicated in the lower right corner.

Writing βi = β0 + δi is simply a means of separating off the mean. Rather
than writing βi ∼ N(β0, σ

2
β), we can equivalently write βi = β0 + δi, where

δi ∼ N(0, σ2
δ ), provided we assign σδ the same distribution as σβ .

Writing δ = ξη is technique known as “parameter expansion,” [1], which
permits the efficient evaluation of new priors for σδ. If ξ = 1 then ηi = δi, and
nothing is changed. If, on the other hand, we take

ξ ∼ N(0, 1) (8)

ση ∼ RIG( 1
2ν,

1
2νs

2), (9)

then it can be shown that
σδ ∼ |tν |(s2),

as can be confirmed by marginalizing over ξ (see Appendix). The advantage
of this expansion is that the priors for both ξ and ση are now conditionally
conjugate, i.e., they are of the same form as the distributions of the same pa-
rameters, conditioned on all the other parameters and the data (the so-called
“full-conditionals”), so they can both be updated using Gibbs sampling (see be-
low). Thus, the new model provides a way of simulating the half-Cauchy prior
on σδ, or more generally the half-t, using Gibbs sampling. Parameter expansion
also modifies the geometry of parameter space to provide better mixing for the
Markov chain.
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4 Inference

We describe inference in the parameter-expanded model. Inference is by Gibbs
sampling, which is a particularly efficient special case of the Metropolis algo-
rithm in which the sampling distribution is available analytically and the ac-
ceptance probability is one. The full set of variables are α, η, β0, ξ, λ ≡ 1/σ2

η,
σ, and y. The joint distribution is of the form

p(α, η, β0, ξ, λ, σ, y) =

p(y | α, η, ξ, β0, σ, λ) p(η | λ) p(α) p(σ) p(λ) p(ξ) p(β0). (10)

We update (α, η, β0) as one block, following ideas of [2].

4.1 α, η, β0

We have

p(α, η, β0 | ξ, σ, λ, y) ∝ p(α, η, β0, y | ξ, σ, λ) (11)

= p(y | α, η, β0, ξ, σ, λ) p(α, η, β0 | ξ, σ, λ). (12)

We consider the two terms on the rhs of Eq. (12) separately.
For the first term, suppose that the yij are ordered into a vector yk, where

k = k(i, j). According to the model Eq. (4.4),

p(y | α, η, β0, ξ, σ, λ) = p(y | φ, σ),

where φ = (α, ξη, β0). Let X be the design matrix for Y , i.e.,

Y ∼ N(Xφ,Σ), (13)

where
Σ = diag(σ2).

The model for y, Eq. (4.4), is

p(y | φ, σ) =

(
det

W (σ)

2π

)1/2

exp{− 1
2 (y −Xφ)TW (σ)(y −Xφ)}, (14)

where W (σ) = Σ−1.
For the second term,

p(α, η, β0 | ξ, σ, λ) =
p(α, η, β0, ξ, σ, λ)

p(ξ, σ, λ)

= p(η | λ),

as is easily derived from the joint distribution Eq. (10).
From Eq. (12), we have

p(φ | ξ, σ, λ, y) ∝ exp
{
− 1

2 (y −Xφ)TW (σ)(y −Xφ)− 1
2λξ
−2φTRφ

}
, (15)
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where R ≡ diag(~0g,~1g, 0). The exponent is now quadratic in φ. Completing the
square, we get

φ | y, σ, ξ, λ ∼ N(φ̂,Σφ) , (16)

where

Σφ(σ, λ, ξ) ≡
(
XTW (σ)X + λξ−2R

)−1
φ̂(σ, λ, ξ, y) ≡ ΣφX

TW (σ)y.

We use a t-superscript to indicate discrete time in the Markov Chain. To
update (α, η, β0), we sample

φ∗ ∼ φ | λt−1, σt−1, ξt−1, y,

and writing φ∗ = (α∗, δ∗, β∗0), set

αt ← α∗

ηt ← δ∗/ξt−1

βt0 ← β∗0 .

4.2 ξ

We have

ξ | · · · ∝ e−ξ
2/2
∏
ij

p(yij | αj , ηj , β0, ξ),

∝ e−f(ξ),

where
f(ξ) = − 1

2

∑
ij

wij (yij − (αj + (β0 + ξηj)tij))
2 − 1

2ξ
2.

Here and below, · · · represents all the other variables (parameters and data).
It is straightforward to infer that

ξ | · · · ∼ N(ξ̂, σ2
ξ ), (17)

where

ξ̂(α, η, β0) =

∑
ij wijηjtij (yij − αj − β0tij)

1 +
∑
ij wij(ηjtij)

2

σ2
ξ (η) =

1 +
∑
ij

wij(ηjtij)
2

−1 .
We generate ξt via Gibbs’ sampling:

ξt ∼ N
(
ξ̂(αt, ηt, βt0), σ2

ξ (ηt)
)
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4.3 λ

It can be seen from the graph that λ is only dependent on the ηj . Thus,

p(λ | · · · ) = p(λ | ~η)

∝ p(~η | λ) p(λ).

We have

p(~η | λ) p(λ) ∝ λg/2e−
1
2λ ~η

2

λa−1e−bλ,

so

λ|~η ∼ Gamma
(
a+ 1

2g, b+ 1
2~η

2
)

.

We generate λt by setting
λt ∼ λ | ηt.

4.4 σ

With p(σ) = 1/σ, we have

p(σ | . . . ) ∝ 1

σn+1
exp

[
−1

2

(y −Xφ)T (y −Xφ)

σ2

]
,

so that

σ | y, φ ∼ RIG
(
1
2n,

1
2 (y −Xφ)T (y −Xφ)

)
.

We generate σt by taking
σt ∼ σ | y, φt,

where φt = (αt, ξtηt, βt0).
The variance σ2 is sometimes broken into two parts, representing measure-

ment uncertainty σ2
m,ij , depending on the data point and assumed known, and

a variation σ2
r , which does not depend on the datapoint and is inferred statis-

tically. The algorithm described here is easily generalized to a model in which
the residual variation is modeled separately. The data equation is then

yij ∼ N(αi + βi · tij , σ2
m,ij + σ2

r) (i = 1, . . . , g; i = 1, . . . , ni).,

We assume a prior p(σr) on σr. We then replace Eq. (13) with

Y ∼ N(Xφ,Σ(σr)), (18)

where
Σ(σr)kk = diag(σ2

r + σ2
m,i(k),j(k))),

and W (σr) ≡ Σ−1(σr). (Recall that k(i, j) is an ordering of the datapoints yij .
i(k) and j(k) are the inverse functions back to the group and instance labels.)
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With these changes, all of the above equations go through with σ replaced by
σr, but σr needs to be updated using a Metropolis step. Let “. . .” denote the
time t value of all parameters other than σr, and compute

rt =
p(σ∗r , . . . | y)

p(σr, . . . | y)

=
p(σ∗r , . . . , y)

p(σr, . . . , y)

=
p(y | φt, σ∗r )

p(y | φt, σr)
p(σ∗r )

p(σr)
.

We set

σtr =

{
σ∗r rt > u

σt−1r rt ≤ u,
(19)

where u is a uniform random variable on [0, 1]. In practice, we compare log rt

and log u; for reference,

log rt = − 1
2 res(φt, σ∗r )− 1

2 log |Σ(σ∗r )|+ log p(σ∗r )

+ 1
2 res(φt, σtr) + 1

2 log |Σ(σtr)| − log p(σtr),

where res(φt, σr), the residual sum of squares is

res(φt, σr) =
∑
ij

(
yij − (Xφt)k(i,j)

)2
σ2
r + σ2

ij

.
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Appendix: Parameter Expansion

For simplicity, we consider a hierarchical model with constant group-level effects,
rather than the linear regression model; the calculations should be essentially
the same. Consider two models:

yij ∼ N(αi, σ
2
ij)

αi ∼ N(0, σ2)

σ ∼ |tν |(s2),

and the parameter-expanded model,

yij ∼ N(ξηi, σ
2
ij)

ξ ∼ N(0, 1)

ηi ∼ N(0, σ2)

σ2 ∼ IG( 1
2ν,

1
2νs

2).

We show that these models are identical, in the sense that the joint distribution
of {yij} is the same. We do so by writing out the distribution for the parameter-
expanded model and marginalizing over ξ, which yields the distribution of the
original model.

p(y) ∝
∫∫∫ ∏

ij

e
−

(yij−ξηi)
2

2σ2
ij ·

∏
i

e−
1
2η

2
i /σ

2

σ
· e− 1

2 ξ
2 1

(σ2)
1
2ν+1

e−
νs2

2σ2 (
∏
i dηi) dξ d(σ2)

∝
∫∫∫ ∏

ij

e
−

(yij−ξηi)
2

2σ2
ij ·

∏
i

e−
1
2α

2
i /τ

2

τ
· e− 1

2 ξ
2 ξν+2

(τ2)
1
2ν+1

e−
ξ2

2 ( νs
2

τ2
) (
∏
i dαi) dξ d(σ2)

ξ2

Separating off the terms in ξ, we get∫
ξνexp

[
−ξ

2

2

(
1 +

νs2

τ2

)]
dξ =

∫
ξνe−

1
2 (Aξ)

2

dξ ∝ 1

Aν+1
,

where

A =

(
1 +

νs2

τ2

)1/2

.
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Thus,

p(y) ∝
∫∫ ∏

ij

e
−

(yij−ξηi)
2

2σ2
ij ·

∏
i

e−
1
2α

2
i /τ

2

τ
· 1

(τ2)(ν+1)/2

1

Aν+1

∏
i dαi · dτ

p(y) ∝
∫∫ ∏

ij

e
−

(yij−ξηi)
2

2σ2
ij ·

∏
i

e−
1
2α

2
i /τ

2

τ
· 1

(τ2 + νs2)(ν+1)/2

∏
i dαi · dτ,

which proves the assertion.
Gelman [1] has a simpler argument: he observes that σα = |ξ|ση, which is

the ratio of a half normal and the square-root of a Gamma-distributed variable,
and thus a t. However, the individual αi are correlated, and we do not see how
to extend his argument to show that the correlation between the ξηi is the same
as the correlation between the αi.
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